Мировой рынок биотехнологий и продукции биоиндустрии.


Крупно- и маломасштабное производство

Необходимо отметить, что в зависимости от цели производства и конечного продукта различают крупно- и маломасштабное производство. Их основные различия заключаются в следующем:

Объем используемых установок и реакторов – маломасштабное производство 100-1000 л, крупномасштабное- 10 000 л.;

Стоимость продукции – маломасштабного производства- высокая, крупномасштабного- невысокая;

Тип продукции – маломасштабного производства- высокоспециализированный для медицины, фармацевтики и.т.п., крупномасштабного - малоспециализированные предметы потребления;

Основные приемы получения – маломасштабного- гентические манипуляции, крупномасштабного технология ферментации, инженерия процессов; стоимость НИР – маломасштабное высокая, крупномасштабное умеренная.

Мы уже поняли, что в основе всех биотехнологических процессов лежит использование способности живых организмов трансформировать дешевый субстрат в более дорогие и ценные продукты или эненргию. Чистую культуру микроорганизма одного вида, происходящую из одной колниеобразующей единицы с характерным геномом и стабильными свойствами называют штаммом.

Производственные штаммы представляют большую ценность в виду того, что их селекция требовала значительных затрат, а кроме того с их помощью получают значительные объемы коммерческого продукта.

Существуют целые коллекции культур микроорганизмов. Например, одна из самых больших коллекций – АТСС – американская коллекция культур микроорганизмов. Существует с начала 20 века. В Республике Беларусь есть коллекции полезных микроорганизмов в Институте микробиологии НАН Беларуси, в мясо-молочном институте НАНБ. Коллекции патогенных микроорганизиов есть при Институте микробиологии и эпидемиологии МЗ РБ и в Институте экспериментальной ветеринарии им.С.Н.Вышелесского.

Производственные штаммы микроорганизмов должны обладать способностью к росту на дешевых питательных средах, высокой скоростью роста и образованию целевого продукта, стабильностью производственных свойств, безвредностью штамма и целевого продукта для человека и окружающей среды.

Микроорганизмы, используемые в промышленности, проходят длительные испытания на безвредность для людей, животных и окружающей среды.

Основные принципы промышленной организации биотехнологических процессов

Получение засевной дозы

В технологическом процессе используются полезные свойства штамма, следовательно, необходимо сохранять и, если возможно, улучшать его производственные качества. Поэтому в биотехнологическом производстве имеется отделение чистой культуры, задачей которого является постоянное и надежное воспроизведение полезных свойств продуцента. Такое отделение проводит контроль и сохранение чистой культуры, а также маломасштабное культивирование для постоянной передачи штамма на стадию ферментации. Фактически это микробиологическая лаборатория, с музеем штаммов-продуцентов. В ходе контрольных высевов и маломасштабных ферментаций (в пробирках, колбах и т. д.) контролируется устойчивость всех имевшихся или приобретенных признаков, послуживших основанием для рекомендации к промышленному применению этих культур. По мере необходимости из отделения чистой культуры получается масса инокулята, идущая в производство.

При периодическом процессе культивирования (при производстве метаболитов) в отделении чистой культуры готовят засевную дозу клеток для каждой из операций основного производства. При непрерывном производстве кормового белка этого не требуется, однако для повышения качества продукта предпочитают время от времени вводить клетки штамма-продуцента из отделения чистой культуры.

Посевные дозы выращиваются последовательно в колбах и бутылях на 10-20 литров, находящихся на качалках или просто в термостатируемом помещении, и далее в последовательности ферментеров объемом (по необходимости) 10, 100, 500 и 1000 литров, в которых осуществляется перемешивание, аэрация и термостатирование культуральной жидкости с клетками.

Отделение чистой культуры должно иметь достаточно большую коллекцию штаммов продуцентов, так как возможны временные переходы с одного штамма на другой, вызванные различными причинами. Например, сезонные изменения температуры частично компенсируются подбором достаточно продуктивных термотолерантных штаммов. Кроме того, микробиологическая промышленность зачастую вынуждена использовать в качестве компонентов питательных сред отходы сельского хозяйства и пищевой промышленности (меласса, кукурузный экстракт), что ведет к сезонным изменениям сырья и предполагает адаптацию продуцента к особенностям среды. Все это делает роль микробиологической службы производства достаточно высокой.

При производстве вакцин и биологических препаратов используют систему посевных серий. В начале создают первичную посевную серию штамма с известными свойствами. Для получения каждой производственной серии рассевают 1 единицу хранения первичной посевной серии. Это важное требование закреплено в правилах ВОЗ для обеспечения стабильности свойств вакцин и диагностических препаратов.

Если вернуться к основным этапам биотехнологического процесса и рассмотреть их с точки зрения принятых методов, то можно отметить, что на стадии сырья и его подготовки используют общепринятые методы.

Чаще всего – сырье это питательная среда для продуцентов. Поэтому, часто проводят его подготовку путем стерилизации, используя автоклавирование или гамма-облучение.

Методы на стадии ферментации и биотрансформации более разнообразны.

1) селекция продуктов;

3) технология рекомбинантных ДНК

4) реакторное культивирование

На стадии конечной обработки и получения целевого продукта используются, в основном, методы фракционирования

1) центрифугирование;

2) фильтрация;

3) дезинтеграция;

4) ультрафильтрация;

5) сушка: сублимационная и в падающем потоке.

Использование грибов, плесеней, дрожжей, актиномицетов

Их используют для получения:

→ антибиотиков (пенициллы, цефалоспорины);

→ каротиноидов (астаксантин, придающий мякоти лососевых рыб красно-оранжевый оттенок, его вырабатывают Rhaffia rhodozima, которых добавляют в корм на рыбозаводах);

→ белка (Candida, Saccharomyces lipolitica);

→ сыров типа рокфор и камамбер (пенициллы);

→ соевого соуса (Aspergillus oryzae).

Из 500 известных видов дрожжей первыми стали использовать Saccharomyces cerevisiae, этот вид используется и наиболее интенсивно.

Saccharomyces cerevisiae

Дрожжи Saccharomyces cerevisiae – это непатогенные одноклеточные микроорганизмы с диметром клетки примерно 5 мкм, которые во многих отношениях представляют собой эукариотический аналог E . coli . Их генетика, молекулярная биология и метаболизм детально изучены. S . cerevisiae размножаются почкованием и хорошо растут на такой же простой среде, как и E . coli . Их способность к превращению сахара в этанол и углекислый газ издавна использовалась для изготовления алкогольных напитков и хлеба. В настоящее время ежегодно во всем мире расходуется более 1 млн. тонн S . cerevisiae . Дрожжи S . cerevisiae представляют также большой научный интерес. В частности, они являются наиболее удобной моделью для исследования других эукариот, в том числе человека, поскольку многие гены, ответственные за регуляцию клеточного деления S . cerevisiae , сходны с таковыми у человека. Это открытие способствовало идентификации и – характеристике генов человека, отвечающих за развитие новообразований. Широко используемая генетическая система дрожжей (искусственная хромосома) является непременным участником всех исследований по изучению ДНК человека. В 1996 г. была определена полная нуклеотидная последовательность всего набора хромосом S . cerevisiae , что еще более повысило ценность этого микроорганизма для научных исследований. Такая работа на эукариотах была выполнена впервые.

Синтезированный бактериальной клеткой эукариотический белок часто приходится повергать ферментативной модификации, присоединяя к белковой молекуле низкомолекулярные соединения во многих случаях это необходимо для правильного функционирования белка. К сожалению, E . coli и другие прокариоты не способны осуществлять эти модификации, поэтому для получения полноценных эукариотических белков используют S . cerevisiae , а также другие виды дрожжей: Kluyveromyces lactis , Saccharomyces diastaticus , Schizisaccharomyces pombe , Yarrowia lipolytica , Hansenula polymoгрha . Наиболее эффективными продуцентами полноценных рекомбинантных белков являются P . pastoris и H . polymoгрha .

Дрожжи Kluyveromyces fragilis сбраживают лактозу. Их используют для получения спирта из сыворотки молока.

Saccharomycopsis lipolytica деградирует углеводороды и употребляется для получения белковой массы. Все три вида принадлежат к классу аскомицетов.

Другие полезные виды относятся к классу дейтеромицетов (несовершенных грибов), так как они размножаются не половым путем, а почкованием. Candida utilis растет в сульфитных сточных водах (отходы бумажной промышленности). Trichosporon cutaneum, окисляющий многочисленные органические соединения, включая некоторые токсичные (например, фенол), играет важную роль в системах аэробной переработки стоков.

Промышленные дрожжи обычно не размножаются половым путем, не образуют спор и полиплоидны. Последним объясняется их сила и способность адаптироваться к изменениям среды культивирования (в норме ядро клетки S.cerevisiae содержит 17 или 34 хромосомы, т.е. клетки либо гаплоидны, либо диплоидны).

Плесени вызывают многочисленные превращения в твердых средах. Пищевые продукты на основе сброженных плесневыми грибами Rhizopus oligosporus соевых бобов или пшеницы содержат в 5-7 раз больше рибофлавина и никотиновой кислоты, чем исходный субстрат. Плесени также продуцируют ферменты, используемые в промышленности (амилазы, пектиназы и т.д.), органические кислоты и антибиотики. Их применяют и в производстве сыров, например, камамбера и рокфора.

Искусственное выращивание макромицетов или грибов способно внести важный вклад в обеспечения продовольствием населения земного шара.

Наиболее легко поддаются искусственному выращиванию древоразрушающие грибы.

Простейшие в биотехнологии

Простейшие относятся к числу нетрадиционных объектов биотехнологии. До недавнего времени они использовались лишь как компонент активного ила при биологической очистке сточных вод. В настоящее время они привлекли внимание исследователей как продуценты биологически активных веществ.

В этом качестве рациональнее использовать свободноживущих простейших, обладающих разнообразными биосинтетическими возможностями и потому широко распространенными в природе.

Особую экологическую нишу занимают простейшие, обитающие в рубце жвачных животных. Они обладают ферментом целлюлазой, способствующей разложению клетчатки в желудке жвачных. Простейшие рубца могут быть источником этого ценного фермента

Возбудитель южноамериканского трипаносомоза - Trypanosoma (Schizotrypanum cruzi) стала первым продуцентом противоопухолевого препарата круцина (СССР) и его аналога-трипанозы (Франция). Изучая механизм действия этих препаратов, советские ученые (Г. И. Роскин, Н. Г. Клюева и их сотрудники), а также их французские коллеги (Ж. Кудер, Ж. Мишель-Брэн и др.) пришли к выводу, что эти препараты оказывают цитотоксический эффект при прямом контакте с опухолью и ингибируют ее опосредованно, путем стимуляции ретикулоэндотелиальной системы. Выяснилось, что ингибирующее действие связано с жирнокислотными фракциями.

Водоросли

Водоросли используются, в основном, для получения белка. Весьма перспективны в этом отношении и культуры одноклеточных водорослей, в частности высокопродуктивных штаммов рода Chlorella и Scenedesmus. Их биомасса после соответствующей обработки используется в качестве добавки в рационы скота, а также в пищевых целях.

Одноклеточные водоросли выращивают в условиях мягкого теплого климата (Средняя Азия, Крым) в открытых бассейнах со специальной питательной средой. К примеру, за теплый период года (6-8 месяцев) можно получить 50-60 т биомассы хлореллы с 1 га, тогда как одна из самых высокопродуктивных трав - люцерна дает с той же площади только 15- 20 т урожая.

Хлорелла содержит около 50 % белка, а люцерна - лишь 18 %. В целом в пересчете на 1 га хлорелла образует 20-30 т чистого белка, а люцерна - 2-3,5 т. Кроме того, хлорелла содержит 40 % углеводов, 7-10 % жиров, витамины А (в 20 раз больше), B2, К, РР и многие микроэлементы. Варьируя состав питательной среды, можно процессы биосинтеза в клетках хлореллы сдвинуть в сторону накопления либо белков, либо углеводов, а также активировать образование тех или иных витаминов.

При завоевании племен майя миссионерами описывался случай, когда испанцы около полутора лет осаждали крепость на вершине горы. Естественно, что все продукты давно должны были кончиться, однако крепость не сдавалась. Когда же она была наконец взята, то испанцы с удивлением увидели в ней небольшие пруды, где культивировались одноклеточные водоросли, из которых индейцы готовили особый сыр. Испанцы попробовали его и нашли весьма приятным на вкус. Однако это было уже после того, как испанцы уничтожили абсолютно всех защитников и секрет племени был утерян. В наше время делались попытки определить этот вид водорослей, из которых готовился сыр, но они не увенчались успехом.

В пищу употребляют около 100 видов макрофитных водорослей

В целом ряде стран водоросли используют как весьма полезную витаминную добавку к кормам для сельскохозяйственных животных.

Наряду с кормами водоросли давно применяют в сельском хозяйстве в качестве удобрений. Биомасса обогащает почву фосфором, калием, йодом и значительным количеством микроэлементов, пополняет также ее бактериальную, в том числе азотфиксирующую, микрофлору. При этом в почве водоросли разлагаются быстрее, чем навозные удобрения, и не засоряют ее семенами сорняков, личинками вредных насекомых, спорами фитопатогенных грибов.

Одним из самых ценных продуктов, получаемых из красных водорослей, является агар - полисахарид, присутствующий в их оболочках и состоящий из агарозы и агаропектина. Количество его доходит до 30-40 % от веса водорослей (водоросли лауренция и грацилярия, гелидиум). Водоросли - единственный источник получения агара, агароидов, каррагинина, альгинатов. В мире ежегодно получается более 16 тыс. т агара.

Бурые водоросли являются единственным источником получения одних из самых ценных веществ водорослей - солей альгиновой кислоты, альгинатов. Альгиновая кислота - линейный гетерополисахарид, построенный из связанных остатков (3 - Д-маннуроновой и α - L-гиулуроновой кислот.

Альгинаты исключительно широко применяются в народном хозяйстве. Это изготовление высококачественных смазок для трущихся деталей машин, медицинские и парфюмерные мази и кремы, синтетические волокна и пластики, стойкие к любой погоде лакокрасочные покрытия, не выцветающие со временем ткани, производство шелка, клеящих веществ исключительно сильного действия, строительных материалов, пищевые продукты отличного качества - фруктовые соки, консервы, мороженое, стабилизаторы растворов, брикетирование топлива, литейное производство и многое другое. Альгинат натрия - наиболее используемое соединение - способен поглощать до 300 весовых единиц воды, образуя при этом вязкие растворы.

Бурые водоросли богаты также весьма полезным соединением - шестиатомным спиртом маннитом, который с успехом применяют в пищевой промышленности, фармацевтике, при производстве бумаги, красок, взрывчатки и др.

Растения в биотехнологии

Водный папоротник азолла ценится как органическое азотное удобрение, так как растет в тесном симбиозе с сине-зеленой водорослью анабена. Азолла быстро размножается простым делением: часть листьев отделяется от материнского растения и начинает самостоятельную жизнь. При благоприятных условиях способна удваивать свою биомассу каждые трое суток.

Представители семейства рясковых (Lemnaceae) - самые мелкие и простые по строению цветковые растения, величина которых редко превышает 1 см. Цветут крайне редко. Рясковые - свободноживущие водные плавающие растения.

Рясковые ( Lemna minor, L. trisulca, Wolfia, Spirodela polyrhiza ) служат кормом для животных, для уток и других водоплавающих птиц, рыб, ондатры.



\Обзор состояния российского рынка биотехнологической продукции

Бурное развитие биологии в конце 20 века, возникновение генной и кле­точной инженерии, а затем геномики и протеомики, привело к созданию новых биотехнологий, способных обеспечить полноценным питанием все население Земли, покончить с инфекционными заболеваниями, создать новую медицину, направленную на предотвращение развития болезней. Сегодня изменяется от­ношение к фундаментальной биологии. С одной стороны ее достижения мгно­венно используются для создания новых лекарственных препаратов, средств ди­агностики, в различных сферах хозяйственной деятельности, с другой все новые биотехнологии являются настолько наукоемкими, что фирмы, активно разви­вающие их, являются по существу научно-производственными комплексами, ве­дущими собственные не только прикладные, но и фундаментальные исследова­ния.

Сегодня биоиндустрия является одной из наиболее наукоемких отраслей про­мышленности в мире. Ее специфика - тесная связь фундаментальных иссле­дований и сопутствующих им прикладных разработок. Зачастую между ними нет временного разрыва: к промышленному освоению нового биотехнологи­ческого процесса и производству готовой продукции биоиндустрии присту­пают практически одновременно.

Биоиндустрию нельзя в настоящее время рассматривать как единую от­расль: ее процессы и продукты рассредоточены практически одновременно в химических, пищевых, энергетических и других производствах, и рынок продуктов биотехнологии весьма обширен. Это является причиной значи­тельных расхождений в оценках рынков биотехнологической продукции.

Общий объем, потребляемой в России, биотехнологической продукции составил в 2001 году около 45 млрд. руб. На отечественное производство приходится примерно 25-30 %. (чуть более 12 млрд. руб.). Основная масса рынка России удовлетворяется за счет импортных поставок. Объем таких поставок достигает примерно 33 млрд. руб. Емкость российского рынка мож­но предварительно оценить в 90-100 млрд. руб., то есть потребности рынка биотехнологической продукции удовлетворяются в настоящее время на 40-45 %, в том числе за счет отечественных производителей примерно 12-13%. В частности, степень удовлетворения потребностей рынка в фармацевтической биотехнологии составляет 51,3%, в пищевых и кормовых добавках – от 22 до 40%, в остальных отраслях – и того меньше.

Биотехнологические процессы используются в различных отраслях про­мышленности, в сельском хозяйстве , при производстве широкого спектра това­ров и услуг, поэтому биотехнологическая промышленность сильно диверсифи­цирована .

Наиболее бурно развивающейся отраслью биотехнологии является меди­цинская биотехнология. Мировой рынок фармацевтической биотехнологической продукции представлен классическими биотехнологическими продуктами - ан­тибиотиками, витаминами , вакцинами , ферментами и аминокислотами; а также т. н. «новейшими биотехнологиями» - генноинженерными лекарственными пре­паратами и вакцинами и диагностическими средствами нового поколения.

Номенклатура фармацевтических препаратов, получаемых с помощью биотехнологий, в России значительно уже мировой, и представлена нижесле­дующими препаратами.

Антибиотики.

В СССР производство антибиотиков базировалось на штаммах отечест­венной селекции, объемы производства составляли свыше 3000 т/год и обеспе­чивали антибиотиками все республики бывшего Союза и страны соцлагеря. К настоящему времени выпуск субстанций антибиотиков сократился в 4 раза, а го­товых форм для инъекций - в 2,2 раза. Общий объем производства отечествен­ных антибиотиков в 2000 году составил чуть более 1 тысячи тонн.

Иммунобиологические препараты.

На предприятиях Российской Федерации выпускается около 500 медицин­ских иммунобиологических препаратов. Отечественные препараты вакцин, ана­токсинов, иммуноглобулинов и альбуминов , бактериофагов, аллергены , интер-фероны, разновидности иммунодиагностиков и тест-систем, препараты нормоф-лоры часто не уступают по качеству зарубежной продукции. На сегодня, около 40 предприятий разных ведомств имеют лицензию на право производства МИБП. Производственных мощностей этих предприятий достаточно для обес­печения учреждений здравоохранения и санитарно-эпидемиологической службы основной номенклатурой МИБП.

Наиболее высококачественную и конкурентоспособную на внешнем рын­ке продукцию производят организации, представляющие собой единый ком­плекс научно-исследовательского института и мощной производственной базы, как, например, ВНИИ защиты животных (п. Юрьевец), ветеринарный институт (г. Казань), а также Институт полиомиелита и вирусных энцефалитов им. . Стимулирование создания и развития, подобных научно-производственных центров должно стать одним из приоритетных направлений государственной политики, первым шагом в этом направлении могло бы быть уточнение правового статуса этих учреждений.

Генно-инженерные лечебно-профилактические препараты.

Исследования по генной инженерии, проводимые ранее широким фрон­том, позволили сконструировать продуценты десятков белков, продвинуться в технике ведения культур клеток и разработать технологию получения ряда пре­паратов.

В настоящее время предприятиями, созданными на базе ведущих науч­ных учреждений, налажен выпуск 4 генно-инженерных лекарственных препара­тов и 1 генно-инженерной вакцины.

Для организации промышленного производства этих препаратов не нуж­но больших производственных площадей, но требуется высокая технологическая культура.

Разработка технологии производства отечественного инсулина (потреб­ность страны, в котором составляет 200 кг субстанции в год и пока полностью покрывается за счет импорта) находится на стадии клинических испытаний (РАО «Биопрепарат»).

Диагностические средства in vitro.

В настоящее время в основном используются два вида иммунодиагности – иммуноферментный анализ и ДНК-диагностика. Иммунодиагностические тесты более распространены, чем ДНК-диагностика. Однако в последние 2-3 го­да рынок ДНК-диагностики активно растет, возникает новый вид биотехнологи­ческих компаний - геномные компании, появляются новые виды ДНК-диагностики - макро - и микроматрицы (биологические микрочипы). Рынок ДНК-диагностики развивается более динамично и в ближайшие годы превысит рынок иммунодиагностики

В России рынок ДНК-диагностики ориентирован, в основном, на платный сектор медицины. Объем рынка полностью покрывается отечественными произ­водителями. Отечественные системы ДНК-диагностики (ПЦР-диагностика) не уступают зарубежным аналогам по качеству, но в раз дешевле. Некоторые отечественные производители ферментов для ДНК-диагностики поставляют свою продукцию ведущим западным фирмам.

Постоянное совершенствование и расширение возможностей ДНК-диагностики уже сегодня позволяет использовать ее для решения проблем прак­тического здравоохранения, не решаемых с помощью имеющихся методов (на­пример, экспресс-диагностика новых форм туберкулеза). Развитие методов ДНК-диагностики и расширение спектра их использования в здравоохранении и ветеринарии должно занять достойное место в государственной политике под­держки биотехнологии.

Таким образом, общий объем выпуска фармацевтической биотехнологи­ческой продукции в 2000 г. составил приблизительно. 6,0 млрд. руб. В него не включена продукция, выпускаемая вновь созданными негосударственными предприятиями (в основном малыми), так как существующий порядок сбора ста­тистической отчетности не предусматривает представления ими данных об объ­емах и номенклатуре своего производства.

В последние годы в мире быстро растет производство лекарств и космети­ческих средств на основе натурального растительного сырья. Этот рынок актив­но развивается и в России. Так Государственный реестр лекарственных препара­тов из растительного сырья постоянно пополняется новыми препаратами, сейчас в него внесено более 600 наименований. По мнению экспертов, данный сектор имеет хорошие перспективы развития. Отмечается высокая конкурентоспособ­ность отечественной продукции, основанной на местном сырье и на традициях народной медицины . Однако насыщенность рынка этими препаратами составля­ет 25-30%. Возможно вследствие того, что многие подобные препараты регист­рируются как пищевые добавки.

Среди участников ежегодных выставок «Инновации в биотехнологии», примерно половина участников - фирмы-производители косметических средств и витаминных пищевых добавок из растительного сырья. Так как эти предпри­ятия являются частными или акционерными обществами , точные статистические данные об объемах их производств отсутствуют.

Определяя в целом сегодняшнее состояние биотехнологических про­изводств и используемых ими технологий, следует отметить, что при общем спаде объемов производства, номенклатура и разнообразие продуктов с исполь­зованием биотехнологий на российском рынке резко возросли. Необычайно воз­росший спрос на продукцию новых категорий создает основу для развития оте­чественных средних и малых биотехнологических предприятий, ориентирован­ных на выпуск продукции широкой номенклатуры.

Реальный возврат вложенных средств и получение прибыли на данном этапе возможен только от высокорентабельных предприятий, ориентированных на медицинскую, фармацевтическую, пищевую промышленности , сельское хо­зяйство и природоохранные мероприятия. Следует, однако, учитывать, что ранее существовавшие требования к качеству продукции, морально устарели. В со­временных условиях качество должно отвечать мировым стандартам и обеспечивать конкурентоспособность с импортными продуктами Последнее возможно при совершенствовании технологий с использованием оборудования нового по­коления. Только это может облегчить выход российской биотехнологической продукции на мировой рынок.

В связи с последними событиями у всех на слуху слово «импортозамещение». Его применяют к месту и не к месту, под него выделяют огромное финансирование. Но мало кто помнит тех, кто ещё 10 лет назад были первопроходцами в деле реального создания конкурентоспособных технологий. Одним из таких центров является Опытное биотехнологическое производство ИБХ РАН, где в 2003 году начали выпуск генно-инженерного инсулина человека по первой в России технологии полного цикла, за что работавшие над этим сотрудники в 2006 году были удостоены премии Правительства РФ в области науки и техники. И с тех пор в ОБП был разработан целый ряд технологий производства биологических препаратов. Каких и в чём вообще заключается разработка - читайте в этой статье.

Обычно выделяют четыре «цветных» направления биотехнологии: «красная», «синяя», «белая» и «зелёная». «Белая» - промышленная - является одной из самых старых отраслей. Она занимается крупнотоннажным производством различных химических соединений, применяемых в быту: витаминов, спирта и т.д. «Синяя» - морская - занимается приложением биотехнологии к проблемам рационального использования ресурсов океанов. К весьма перспективным направлениям относят «зелёную» отрасль - растительную, в которой генетически модифицируют деревья и сельхозкультуры, а также разрабатывают методы переработки растительного сырья и отходов в полезную для промышленности продукцию. В этом она близка «белой» и по сути является её развитием на более высоком уровне. Но больше всего развито «красное» направление, в котором создаётся продукция для медицинского применения, в основном - биофармацевтические препараты.

Страницы истории

Начало становлению медицинской биотехнологии было положено давно, ещё в начале 70-х годов прошлого века с изобретения технологии рекомбинантной ДНК . А уже в 1982 году был зарегистрирован первый препарат, полученный таким способом - инсулин. В Советском Союзе понимали перспективы этого нового направления, и по настоянию академика Ю.А. Овчинникова, директора , в открытом в 1984 году новом здании института целых два корпуса было выделено под комплексную опытную установку. Основной её задачей являлась разработка технологий получения фармпрепаратов, в особенности биотехнологической природы. Оснащение для тех лет было вполне на мировом уровне, однако перестройка и развал Советского Союза наложили негативный отпечаток - в 90-е годы опытная установка стала не нужна, и большинство специалистов ушло.

Технология рекомбинантной ДНК

Осенью на «биомолекуле» мы опубликовали статью студентки Пермского государственного национального исследовательского университета « » . И хотя речь в ней не о разработке препарата для крупной промышленности, статья даёт представление обо всех этапах получения патента на определённый штамм микроорганизма, созданный биотехнологическим путём. - Ред.

Для задач непосредственно производства создаётся специальный рабочий банк из сотен ампул, каждая из которых предназначена для получения отдельной партии препарата. Этот банк также закладывается на хранение в музей культур (рис. 2).

Далее проводится разработка основной биотехнологической стадии - культивирования клеток. В её ходе выбирают оптимальный состав среды, на которой выращивают клетки, режим культивирования (непрерывный или периодический), его аппаратурное оформление и параметры (pH, температура, скорость подачи и состав подпитки). Основная цель, преследуемая на этом этапе, - повышение объёмной продуктивности, что позволяет получать на оборудовании небольшого масштаба большое количество продукта, достаточное для решения испытательной задачи. Кроме того, за счёт этого снижается и себестоимость получения продукта - в десятки, а то и сотни раз от первоначального лабораторного способа. Решением всех этих задач занимается цех экспериментальной ферментации опытного производства (рис. 3).

Рисунок 3. Контроль за ходом процесса в пилотном ферментёре рабочим объёмом 20 л в цехе экспериментальной ферментации.

В конце культивирования получается культуральная жидкость, содержащая помимо отработанной среды и биомассы клеток ещё и продукт, который необходимо выделить. В зависимости от выбранного вида клеток, продукт может либо выделяться в среду, либо синтезироваться внутри клеток, иногда в виде телец включения (агрегатов из белков). А если смотреть шире, то в случае клеточной или тканевой терапии продуктом будут сами клетки. При выделении сначала отделяют клетки (биомассу) от отработанной среды. Если продукт содержится в среде, то в работу идёт она, а клетки направляют на дезактивацию (в отходы).

Если же продукт получается в тельцах включения, то дезактивируют среду, а клетки разрушают, выделяют тельца и растворяют (солюбилизируют) их. Полученный раствор помимо продукта содержит ещё и белки, выделяемые клетками в среду или синтезирующиеся в виде телец включения, так что для достижения «фармацевтической» степени чистоты требуется несколько ступеней очистки. Чаще всего это несколько (от двух) различных типов хроматографических процессов: ионообменного, гидрофобного, обращённо-фазового, гель-фильтрационного (рис. 4). Для каждого продукта их последовательность и количество будут разные и требуют подбора на основе литературных данных, опыта и экспериментов. Кроме того, для каждого процесса нужно выбирать буферные растворы и стратегию их подачи на хроматографическую колонну. Конечная цель - это продукт высочайшей степени чистоты: иногда более 99,9%, а это означает, что все возможные примеси могут составлять не более 0,1% от массы активной фармацевтической субстанции - результата этой стадии. Очисткой и разработкой её стратегии в рамках опытного биотехнологического производства занимается цех выделения и очистки .

Рисунок 4. Производственное оборудование. Слева: Препаративный хроматограф и буферные растворы, применяемые для крупномасштабной очистки биопрепаратов. Справа: Кристаллизация инсулина в цехе выделения и очистки.

Однако для проведения доклинических и клинических исследований субстанции недостаточно, необходимо ещё изготовить готовую лекарственную форму (ГЛФ) - добавить вспомогательные вещества и упаковать во флаконы или картриджи для шприц-ручек. И если способ упаковки в основном зависит от аппаратного оформления конкретного производства, то вспомогательные вещества в большей степени зависят от препарата и для каждого подбираются отдельно. Хотя здесь не требуется сложных статистических методов и большого количества экспериментов, процесс получения ГЛФ довольно трудоёмкий, и им также занимается отдельное подразделение - цех готовых лекарственных форм (рис. 5).

Немного о терминах

Когда говорят о фармпрепаратах, часто произносят два термина: активная фармацевтическая субстанция (АФС) и готовая лекарственная форма (ГЛФ). АФС или просто субстанция - по сути, главное действующее вещество, которое и отвечает за основной эффект препарата. ГЛФ или готовая форма - это АФС вместе со вспомогательными веществами и в определённом виде: таблетки, капсулы, раствора во флаконе или картридже.

Рисунок 5. Работа в «чистой» зоне. Слева: Разлив готовой формы биопрепарата в цехе готовых лекарственных форм. Справа: Контроль процесса разлива в цехе готовых лекарственных форм. Эффектный комбинезон совсем не для того, чтобы смотреться круто. Конечную форму производят в стерильных условиях в крайне чистой среде. Чтобы в окружающую среду не попадало лишних частиц, все части тела изолируются, а вся косметика перед входом в чистую зону смывается. Работать в таких условиях весьма непросто - несколько часов, и ты уже готов одним махом опустошить полуторалитровую бутылку воды. Не говоря уже о том, что всё это время ты будешь мечтать о дýше.

Казалось бы, дойдя уже до готовой формы, можно переходить непосредственно к доклиническим исследованиям, ведь именно это чаще всего является целью производства лекарственных веществ на мощностях ОБП. Однако прежде необходимо проанализировать полученный продукт, чтобы убедиться в соответствии его характеристик ожидаемым и заложить конкретные параметры в регистрационное досье, которое необходимо для регистрации препарата в регуляторных органах. На данном этапе важно показать, что количество примесей не превышает разрешённого, а полученное основное действующее вещество имеет структуру и активность, соответствующие ожидаемым. Спектр применяемых здесь методов довольно широк: вестерн-блот , изоэлектрофокусировка , хроматография, ЛАЛ-тест , масс-спектрометрия, имунноферментный анализ , ИК-спектроскопия и многие другие. Выбор конкретных методов зависит в первую очередь от природы биопрепарата и для каждого из них во многом индивидуален. Хотя есть и стандартные общие методы вроде электрофореза в полиакриламидном геле или изоэлектрофокусировки. В большинстве же методов, пусть они и являются стандартными в части общей последовательности действий, параметры проведения нуждаются в отдельной проработке для каждой готовой формы, так как вспомогательные вещества иногда влияют на аналитические характеристики основного.

Описанный этап является крайне важным, так как даёт оценку качественным характеристикам препарата и их постоянству от партии к партии. Технология - это не только получение какого-то конкретного продукта и достижение высокой эффективности процесса. Это ещё и умение стабильно обеспечивать высокое качество продукта. Помимо контроля конечного продукта осуществляют промежуточный контроль критических точек производственного процесса, чтобы как можно раньше выявить отклонения, способные повлиять на качество конечного препарата, и минимизировать время и затраты на их устранение. На опытном биотехнологическом производстве за этот этап отвечает отдел контроля качества при участии контрольно-аналитической лаборатории (рис. 6).

Рисунок 6. Важен контроль! Слева: Контрольно-аналитическая лаборатория - все в сборе. Справа: Микробиологический контроль образцов с производства в отделе контроля качества.

Разведка боем

Занимаясь биотехнологией, ты вынужден постоянно знакомиться с новыми передовыми научными достижениями в разных областях: молекулярной биологии, синтетической биологии, химическом приборостроении, IT и многих других. При правильном сочетании полученных знаний и рождается эффективная технология. Это трудный, кропотливый, но очень увлекательный процесс.

Но самые сильные, ни с чем, пожалуй, несравнимые чувства испытываешь, когда, используя инструментарий, созданный природой в ходе эволюции и модифицированный с помощью технологии рекомбинантной ДНК, удается получить конкретный лекарственный препарат, который, возможно, кому-то облегчит состояние, а кого-то и спасет. Это просто круто!

Сотрудник группы эукариотических продуцентов Даниил Павленко раскрывает этот вопрос несколько иначе:

Меня всегда привлекало ориентированное на практику творчество. Создание чего-то, что не просто работает, но ещё и делает это эффективно, т.е. с затратой минимума ресурсов, дарит массу положительных эмоций. Биотех хорош тем, что здесь простор для творчества просто огромен: можно заниматься разработкой сред для выращивания культур, можно основательно вложиться в разработку классного вектора, можно подбирать оптимальные настройки аппаратного обеспечения, можно менять метаболизм клеток-продуцентов, а уж какой простор открывается, если заняться созданием уникальных аппаратов и технологических линий!.. Впечатляют и возможные результаты: комбинация всех подходов может привести к понижению себестоимости производства на порядок, а то и два. Так, мы в своей технологии получения фолликул-стимулирующего гормона определенным изменением достигли увеличения продуктивности, а, следовательно, и уменьшения себестоимости, в 3,5 раза. И понимаем, куда надо двигаться, чтобы повысить продуктивность ещё раз в 5–10. Не удивительно, что от этого всего захватывает дух.

За науку

В прикладных исследованиях научные публикации - дело пусть и не десятое, но явно отходящее на второй план. Основными результатами деятельности являются патенты, ноу-хау, регламенты на конкретные препараты. Статьи же по прикладным исследованиям обычно публикуются в специализированных журналах с соответствующей тематикой, импакт-фактор у которых обычно не переваливает за 3. С фундаментальными исследованиями здесь конкурировать не выйдет, но это не значит, что на опытном производстве науки нет совсем. Например, коллективом ОБП были обнаружены такие явления как антимикробное действие шиконина или эффект вытеснения при очистке генно-инженерного инсулина человека. Хотя большинство статей посвящено разработке отдельных производственных стадий, методов анализа или целых технологий .

Не только работа

Несмотря на серьёзность задач и практическую ориентированность, сотрудники ОБП - живые люди и не прочь поболтать «за жизнь». Собираются обычно пятничными вечерами в кабинете начальника производства Василия Степаненко, который, понимая, что задуманное на остаток дня ему завершить уже не дадут, также включается в беседу. Хотя и тут всё начинается с обсуждения текущих дел и задач и, перетекая в обсуждение стратегии и состояния дел в России и мире, в итоге выходит на разговор о философских и мировоззренческих вопросах.

Обучение без отрыва от производства

Несмотря на высокий уровень ответственности, на ОБП есть успешный опыт выполнения работ студентами и аспирантами с защитой ими магистерских и кандидатских диссертаций. В основном на базе ОБП выполнялись работы вроде создания схем отдельных этапов в производстве какого-либо препарата, подбора условий проведения процессов с целью увеличения выхода, разработки и валидации аналитических методик. Но помимо задач, связанных непосредственно с разработкой технологий создания биологических препаратов, позиционирование производства как опытного подразумевает и возможность отработки различных технических решений. Так, сейчас начато сотрудничество с Университетом машиностроения по направлению разработки различных приборов и аппаратов, применяемых в биотехнологическом производстве.

При этом идей, куда можно двигаться, и каким будет будущее «красной» биотехнологии, предостаточно. Если смотреть глобально, то есть несколько возможных направлений:

В каком направлении всё двинется? Пока сказать сложно, но во многом это будет зависеть от молодёжи, полной прорывных идей и мотивации к созиданию нового.

Литература

  1. Полякова М. (2010). Несахарное производство . Сайт ИБХ ;
  2. Молекулярное клонирование, или как засунуть в клетку чужеродный генетический материал ;
  3. Прикладная биотехнология и молекулярная микробиология. Практическое руководство для студентов, или как запатентовать биопрепарат ;
  4. Karyagina T.B., Arzumanyan V.G., Timchenko T.V., Bairamashvili D.I. (2001). Antimicrobial activity of shikonin preparations . Pharm. Chem. J. 35 , 435–436;
  5. Gusarov D., Nekipelova V., Gusarova V., Lasman V., Bairamashvili D. (2009). Displacement effect during HPLC preparative purification of human insulin . J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 877 , 1216–1220;
  6. Gusarov D.A., Sokolova I.V., Gusarova V.D., Evteeva E.A., Vorob’eva T.V., Kosarev S.A. (2012). Development of effective pilot-scale technology for producing N,N-bis-met-histone H1.3 used for lymphoma treatment . Pharm. Chem. J. 46 , 234–240;
  7. Urmantseva V.V., Gaevskaya O.A., Karyagina T.B., Bairamashvili D.I. (2005). The effect of amino acids as components of nutrient medium on the accumulation of protoberberine alkaloids in the cell culture of Thalictrum minus . Russ. J. Plant Physiol. 52 , 388–391;
  8. Gusarova V., Vorobjeva T., Gusarov D., Lasman V., Bayramashvili D. (2007). Size-exclusion chromatography based on silica-diol for the analysis of the proinsulin fusion protein . J. Chromatogr. A. 1176 , 157–162;
  9. Zhang Y.H. (2010). Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities . Biotechnol. Bioeng. 105 , 663–677;

Многообразие форм живой материи и новые знания в области физики и химии живых систем позволяют конструировать биологические системы различной степени сложности и организации, продуцирующие широчайший спектр макромолекул. Фундаментальные знания о молекулярной организации и закономерностях функционирования биосинтетических путей являются основой для метаболической инженерии биосистем суперпродукции макромолекул с заданными свойствами.

На смену ставших рутинными биотехнологическим продуктам (белку одноклеточных, биоудобрениям и биогазу, органическим кислотам, аминокислотам) приходят новые продукты и препараты, среди которых - средства диагностики и лечения на основе технологий генетической инженерии и клонирования, вакцины, сыворотки, моноклональные антитела, экологически чистые материалы, а также биоинженерная аппаратура нового поколения для реализации биотехнологических процессов.

Ведущие фирмы (табл. 1.3) в области биотехнологии в течение небольшого периода (с 1978 до 1982 гг. - период взрыва мирового рынка генно-инженерных продуктов) увеличили свои активы более чем в 30 раз; при этом их годовой доход возрос при этом с 5 до 67 млн дол.

Таблица 1.3. Динамика мирового рынка продукции биотехнологии, млрд дол.


Десятки новых препаратов ежегодно проходят различные стадии законодательного утверждения. Среди них - диагностикумы вируса В, СПИДа и др., моноклональные антитела, конъюгированные с растительными токсинами, эффективные противоопухолевые препараты, генные диагностикумы и пр.

К 2000 г. на мировом рынке биотехнологических продуктов доля медицинских препаратов, полученных только в США методами клеточной и генетической инженерии, достигла свыше 30 млрд дол., что составило около 60 % всех затрат.

Перечень медицинских препаратов, прошедших все стадии исследований и допущенных на рынок за период с конца 80-х гг. до 2004 г., существенно расширился. Ежегодно в США FDA (Администрация по продуктам питания и препаратам) выдает порядка 30-40 разрешений на серийное производство и применение биотехнологических препаратов и вакцин.

Помимо полученных и выпущенных на рынок в 1981 г. рекомбинантных инсулина, гормона роста, иммунно-глобулинов и эритропоэтина, появились следующие препараты: липосомальная форма противогрибкового препарата, активатор тканевого плазминогена; рекомбинантные факторы свертывания крови; человеческий альбумин; заменитель человеческой кожи, состоящий из коллагена, фибробластов и кератиноцитов; культивированные аутологичные хондроциты; липосомальная форма химиотерапевтического агента даунорубицина; вакцины против гепатита В и для лечения хронического гепатита С; рекомбинантный фолликулостимулирующий гормон для лечения бесплодия; биоинженерный коллагеновый матрикс для реконструкции мышечной ткани; препараты для диагностики и лечения ВИЧ-инфекции; костный трансплантат, содержащий рекомбинантный костный морфогенетический протеин (rhBMP-2); гранулоцитарно-макрофагальный колониестимулирующий фактор при проведении аутологичных трансплантаций костного мозга; ботулинический токсин типа В и др.

Японский рынок биотехнологических диагностикумов и препаратов в 2000 г. составил свыше 30 млрд дол.; среди них - препараты для лечения первичных и приобретенных иммунодефицитов, аутоиммунных состояний, вирусных и микробных инфекций, злокачественных новообразований, иммуноспецифических синдромов при шоке, лучевой и ожоговых болезнях.

Серьезный прорыв был достигнут в области получения трансгенных сортов культурных растений, это генно-инженерный сорт сладкой («золотой») кукурузы; гибридные сорта кукурузы, рапса, пшеницы и сои с генами устойчивости к насекомым и гербицидам; трансгенные сорта хлопка, устойчивые к вилту, вредителям и гербицидам; трансгенные сорта папайи с красной и желтой мякотью, устойчивые к вирусу кольцевой пятнистости; а также генетически модифицированные фрукты и овощи с удлиненным сроком хранения (сорта томатов и клубники, не портящиеся при длительном хранении за счет снижения синтеза этилена, ускоряющего процесс физиологического дозревания плодов).

В области рыбоводства были получены модифицированные быстрорастущие морепродукты (лосось, камбала), достигающие товарной массы в течение одного-полутора лет, по сравнению с двумя-тремя годами, требующимися для лососей традиционных пород и др.

Объем рынка биотехнологий в мире к 2005 г. оценивался примерно в 200 млрд дол. США. Ежегодный рост в настоящее время составляет около 7-9 %. Для рынка биотехнологий в мире 2005 г. можно охарактеризовать как один из самых успешных за всю историю развития этой отрасли. В этот период правительства стран Европы и Азии продолжали демонстрировать энтузиазм по отношению к индустрии биотехнологий и инвестировать миллиарды долларов в эту отрасль, считая ее одним из приоритетов экономического развития своих государств.

В настоящее время компании, связанные с биотехнологией и медициной, начинают выдвигаться на ведущие позиции в рейтингах по различным приоритетам. Так, журнал Fortune опубликовал ежегодный рейтинг 100 лучших компаний-работодателей. Лучшим местом работы в США признана компания Google. На втором месте - биотехнологическая компания Genetech. В рейтинге, проводимом компанией «Делойт», по показателям наиболее быстрого роста названы фирмы Anistoma и Biotage, занимающиеся разработкой биотехнологических препаратов для лечения онкологических заболеваний, генетическим анализом и медико-техническими исследованиями, заняли среди стран Европы 3-е и 4-е места, показав рост за 2005 г. на 20 и 13 % соответственно.

Рынок биотехнологий в разных странах имеет свои особенности, обусловленные уровнем развития экономики стран и доходами населения. Наиболее активно в настоящее время ведется разработка лекарственных средств с использованием современной биотехнологии. В США, Японии и отдельных странах Западной Европы на эти цели расходуется в среднем средств, выделяемых на НИОКР в области биотехнологии. Практически во всех этих государствах существуют правительственные программы поддержки биотехнологических компаний.

В США, являющихся лидером в области современной биотехнологии, для проведения фундаментальных и прикладных исследований было образовано много специализированных биотехнологических фирм, которые, привлекая частный и государственный капитал и лучшие научные кадры, в считанные годы разработали и запатентовали способы получения многих белковых продуктов медицинского назначения. К таким фирмам относятся в первую очередь Genentech, Biogen, Amgen, Genetic Institute, Cetus, Immunex и ряд других.

Примерно в это же время к финансированию НИОКР в области современной биотехнологии подключились и крупные транснациональные компании, приобретая акции или лицензии на готовые продукты, а впоследствии создавая собственные исследовательские подразделения. Эти фирмы сыграли решающую роль в промышленном внедрении первых генно-инженерных медицинских препаратов, таких как инсулин, гормон роста человека, интерферон, эритропоэтин, тканевой активатор плазминогена, вакцина против гепатита В и др.

Например, фирма Genentech имеет различные лицензионные соглашения и соглашения о сотрудничестве с Elly Lilly (США), Hoffmann-La Roshe (Швейцария), Takeda, Daiichy Seiyaky, Toray и Fujisawa (Япония), Boeringer Ingelheim, Gruenenthal (Германия), Kabi Vitrum (Швеция).

По данным исследовательской компании Abercade, основными сегментами рынка биотехнологических продуктов в РФ являются фармацевтика (66 %), препараты для сельского хозяйства (18 %), дрожжи (9 %) (рис. 1.1) при весьма низких (порядка 1 %) уровнях остальных продуктов.



Рис. 1.1. Долевой анализ рынка биотехнологии РФ (по данным исследовательской компании Abercade, источник - https://www.abercade.ru/)


Однако нельзя не отметить, что основную долю самого развитого рынка фармацевтических препаратов в РФ (порядка 450 млн дол. США) в настоящее время занимает импортная продукция - это преимущественно инсулины, вакцины, сыворотки. Доля отечественной фармацевтической продукции в совокупном объеме составляет только 60,6 млн дол. США.

Более перспективным выглядит рынок отечественной промышленной биотехнологии, в основном это производство ферментов и средств защиты растений. Объемы продаж ферментных препаратов отечественного производства составляет порядка 12,3 млн дол. США, это 38 % от общего объема этого сегмента рынка.

Преимущественно это ферменты и ферментные препараты для спиртовой промышленности и для животноводства.

Среди биотехнологических препаратов сельскохозяйственного назначения - средства защиты и стимуляторы роста растений, пробиотики, вакцины ветеринарные, кормовые антибиотики, аминокислоты и кормовой белок, витамины, кормовые добавки.

На рынке биотехнологических препаратов для защиты окружающей среды доминирует отечественное производство продукции в размере 8 млн дол. США, а доля импортной продукции (бактериальные препараты для ликвидации нефтяных загрязнений, биосорбенты для очистки воды и донных отложений от нефтепродуктов) составляет только 800 тыс. дол. США. Объемы отечественного производства дрожжей составляют 58 млн дол. США, импорт этого вида биотехнологического продукта - в 3,5 раза меньше.

Направления более наукоемких новейших биотехнологий, базирующихся на достижениях генетической инженерии, в России, к сожалению, только вступают в фазу своего развития. Так, на рынке генетически модифицированных культур, которые занимают в мире площадь 8,1 млн га и их продажи ежегодно растут на 20 %, Россия пока не представлена.

Н.А. Воинов, Т.Г. Волова

Сравним в данном разделе, какие типологии биотехнологий предлагают организации, занятые в данной сфере (госпрограммы, технологические платформы и бизнес) а также российские эксперты, исследующие биотехнологические рынки.

В первую очередь обратимся к «Комплексной программе развития биотехнологий в Российской Федерации на период до 2020 года» ()основному документу, утвержденному Правительством России, в котором отражены желаемые качественные и количественные характеристики развития биотехнологий в стране. В соответствии с Программой можно выделить девять следующих отраслей биотехнологий:

  1. Биофармацевтика , включающая жизненно важные лекарственные препараты, вакцины нового поколения, антибиотики и бактериофаги;
  2. Биомедицина , подразделяющаяся на следующие подотрасли: диагностикумы ин витро, персонализированная медицина, клеточные биомедицинские технологии, биосовместимые материалы, системная медицина и биоинформатика, развитие банков биологических образцов;
  3. Промышленная биотехнология , включающая большое количество подотраслей, среди которых производство ферментов, аминокислот и полисахаридов; организация производства глюкозно-фруктозных сиропов; производство субстанций антибиотиков; производство биодеградируемых полимеров; создание биологических комплексов по глубокой переработке древесной биомассы, зерновых и других сельскохозяйственных культур; применение биогеотехнологии в горнодобывающей промышленности; развитие принципов биорефайнинга на основе производства целлюлозы и т.д.;
  4. Биоэнергетика , предполагающая производство электрической энергии и тепла из биомассы; утилизацию эмиссии парниковых газов и предотвращение и ликвидация последствий вредного антропогенного воздействия на окружающую среду энергетической отраслью методами биоконверсии;
  5. Сельскохозяйственная биотехнология подразделяется на биотехнологии для растениеводства (биологическая защита растений, создание сортов растений биотехнологическими методами, биотехнология почв и биоудобрения), биотехнологии для животноводства (технологии молекулярной селекции животных и птицы, трансгенные и клонированные животные, биопрепараты для животноводства, кормовой белок, биологические компоненты кормов и премиксов), а также включающая переработку сельскохозяйственных отходов;
  6. Пищевая биотехнология , включает производство пищевого белка, ферментных препаратов, пребиотиков, пробиотиков, синбиотиков, функциональных пищевых продуктов (лечебных, профилактических и детских), а также производство пищевых ингредиентов и глубокую переработку пищевого сырья;
  7. Лесная биотехнология делится на четыре направления: управление лесонасаждениями, сохранение и воспроизводство лесных генетических ресурсов, создание биотехнологических форм деревьев с заданными признаками и биологические средства защиты леса;
  8. Природоохранная (экологическая) биотехнология предполагает биоремедиацию, экологически чистое жиль, создание биологических коллекций и биоресурсных центров;
  9. Морская биотехнология фокусируется на создании сети аквабиоцентров, глубокой переработке гидробионтов и продукции аквакультур, производстве специализированного корма для аквакультур.

Данная классификация включает в себя наиболее подробный перечень отраслей, но упомянуты лишь основные подотрасли, стратегически важные. В третьем разделе настоящей работы расширим перечень подотрослей, существующих в российской экономике.

Дальнейшее добавление цветов привело к тому, что самая широкая типология биотехнологий, представленная в большом количестве англоязычных научных работ , содержит десять отраслей, где среди традиционных отраслей появляются следующие: черная (или темная, dark) биотехнология, связанная с военными целями и терроризмом; фиолетовая биотехнология, связанная с патентованием биотехнологических открытий и разработок, а именно со всеми вопросами интеллектуальной собственности; золотая биотехнология, посвященная вопросам биоинформатики и нанобиотехнологиям; коричневая биотехнология, связанная с биотехнологическим решением проблем пустынных и аридных территорий (пространственная и геомикробиология).

Примером описанной выше расширенной типология биотехнологий является типология, опубликованная в одной из статей журнала Electronic Journal of Biotechnology (), (см. Рисунок 4). Стоит обратить особое внимание на серую и белую биотехнологии. Здесь, как и в некоторых других источниках, серая и белая биотехнологии не просто означают экологическую и промышленную биотехнологии соответственно, а делается акцент на том, что белая биотехнология — это все, что основано на исследованиях генов, а серая – это все биотехнологии, связанные с ферментами и классическими биопроцессами. В этом есть определенная логика, так как многие промышленные биотехнологии дают значительный положительный экологический эффект. Такой подход мог быть обусловлен желанием выделить «чистые» биотехнологические отрасли, а именно более или менее однозначно отнести ту или иную технологию к одному «цвету».


Рисунок 4. Типология Electronic Journal of Biotechnology
Источник: http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/1114/1496

Может показаться, что биоэнергетика здесь не представлена, однако следует обратить внимание на зеленую биотехнологию: она содержит на самом деле экологическую биотехнологию в классическом смысле (то, что в российской литературе принято считать «серой» биотехнологией), а также биоэнергетику (которая не имеет цвета в российских источниках и часто «теряется» во многих типологиях).

2. Предлагаемая типология биотехнологий, развивающихся в России

На наш взгляд, типология биотехнологий – достаточно сложная вещь, так как биотехнологическую продукцию можно разделить по принципу «в какой отрасли осуществляется производство» и по принципу «какая отрасль нуждается, использует». Но и здесь не все однозначно, поэтому постараемся в предлагаемой типологии учесть сразу и процесс производства, и процесс использования. Это позволит более выпукло отразить связи между отраслями биотехнологий (играющие важную роль для их взаимного развития) в противоположность приведенным выше типологиям, которые представляют отрасли биотехнологий изолированно, стараются классифицировать их на основе различающихся признаков, не учитывая родство отраслей. Также постараемся раскрыть содержание биотехнологических отраслей более подробно и указать наиболее полный перечень их подотраслей, применительно к ситуации в России.

Построим предлагаемую типологию, основываясь на концепции межотраслевого баланса, а именно представим ее в виде таблицы, где строки содержат биотехнологические отрасли по принципу «где производится», а в столбцах указаны отрасли «где используется» (см. Таблицу 1).
Включим в типологию актуальные и более или менее развитые в России отрасли биотехнологий. Не будем включать черную, коричневую, золотую и фиолетовую отрасли: российские биотехнологии развиты только по 6 из 10 отраслей биоэкономики. Присвоим биоэнергетике зеленый цвет, выделим лесную биотехнологию и также присвоим ей зеленый цвет, а экологическую биотехнологию объединим с биотехнологией по переработке отходов и будем считать ее серой биотехнологией.

В ряде русскоязычных источников () к биоэнергетике относится получение энергии только с использованием возобновляемых биологических ресурсов и биологических процессов, тогда как в соответствии с «Комплексной программой развития биотехнологий в Российской Федерации на период до 2020 года» в данную отрасль входят также меры, снижающие антропогенное воздействие традиционной энергетики на окружающую среду. По нашему мнению, второй подход (более широкий) предпочтительнее, так как в ближайшей перспективе только биологические источники энергии не смогут полностью заменить традиционные.

Среди отраслей, «производящих» биотехнологии, выделим отдельную отрасль «наука». Многие аспекты биотехнологий сейчас еще имеют только теоретическое значение, но это неотъемлемая и очень важная часть наукоемкого производства. К подобным биотехнологиям, несомненно, относится постоянное пополнение базы прочитанных геномов различных живых организмов, живущих на Земле в настоящее время или обитавших в ранние эпохи, а также создание банка биологических образцов и биологических коллекций.

Таким образом, еще раз отметим, что в практических целях технологические платформы и компании создают классификацию биотехнологий, отвечающую целям работы. Такие классификации не отличаются полнотой и подробностью, что в данном случае является не «минусом», а обоснованной необходимостью. Наиболее широкая и классически принятая классификация биотехнологий – это разделение отраслей по цветам. В данной работе также предложена типология биотехнологий, развивающихся в России, целью которой было отразить связи между отраслями.

Таблица 1. Предлагаемая типология биотехнологий в России

___________________

Доклад Надежды Орловой «Рынок биотехнологий в мире и в России. Перспективы развития» в цикле семинаров «Биотехнологии будущего»: http://www.youtube.com/watch?v=72VsxIYfsAw;
Лекция Надежды Орловой на Экономическом факультете МГУ имени М.В.Ломоносова в рамках межфакультетского курса «Биоэкономика и наукоемкий бизнес»:
http://www.youtube.com/watch?v=aYh8oE-FDzg;
Исследовательская компания Abercade:
http://www.abercade.ru/research/analysis/themeid_20.html.

Более подробная информация о некоторых добавках к кормам «Биотехнологии в сельском хозяйстве»: http://www.youtube.com/watch?v=bgIzT3vkJ-s

Поделиться: